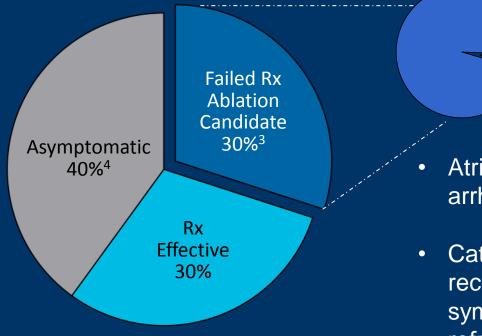
The FIRE AND ICE Trial

Cryoballoon or Radiofrequency Ablation for Paroxysmal Atrial Fibrillation


Primary Endpoint and Secondary Analyses Results

(ClinicalTrials.gov NCT01490814)

Contents

- Background
- Trial Design
- Primary Endpoint Results
- Secondary Analyses Results

Background

1. Rahman , et al. Nat. Rev. Cardiol. 2014; 11: 639-654

- 2. Medtronic internal estimates taking into account of clinical and economic exclusion
- 3. Wyse, et al. Circ. 1996; 93:1262-1277
- 4. Savelieva, et al. Pace. 2000; 23: 145-148
- 5. Calkins, H., et al. Heart Rhythm. 2012; 9(4): p. 632-696.e20
- 6. Raviele et al. J Cardiovasc Electrophysiol, 2012;23:890-923

~4%² treated annually

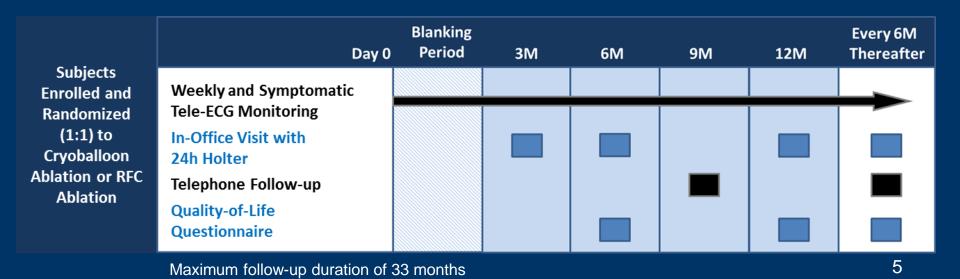
- Atrial fibrillation (AF) is the most common arrhythmia with prevalence > 33 million¹
- Catheter ablation is a Class I Level A recommendation for treatment of symptomatic paroxysmal AF (PAF) refractory or intolerant to ≥1 Class I or III antiarrhythmic drug (AAD)⁵
- Pulmonary vein isolation (PVI) is the cornerstone of AF ablation strategy⁶

Objectives and Hypothesis

- Compare the safety and efficacy of PVI by either:
 - Cryoablation (Arctic Front[™] / Arctic Front Advance[™] catheters) guided by fluoroscopy OR
 - RFC ablation (THERMOCOOL® / THERMOCOOL® SF / THERMOCOOL® SMARTTOUCH® catheters) guided by CARTO® 3D mapping system
- <u>Primary Efficacy Endpoint:</u> Time to first documented recurrence of AF>30s/AT/AFL, prescription of AAD, or re-ablation

Analysis Methods: Non-inferiority log-rank test

- Assumed event-free 1 year survival rates of 70% with 10% non-inferiority margin corresponding to HR=1.43
- <u>Primary Safety Endpoint</u>: Time to first all-cause death, all-cause stroke/TIA or treatment-related serious AEs (e.g. phrenic nerve injury, atrioesophageal fistula, etc.)


Methods

Key Inclusion Criteria

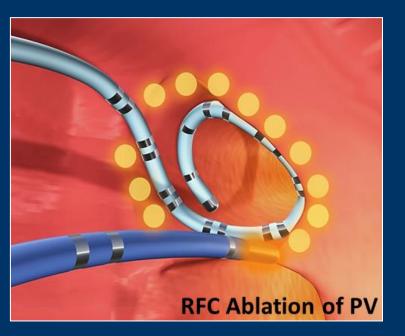
- Symptomatic PAF
- Prior AAD failure
- \geq 18 & \leq 75 years of age

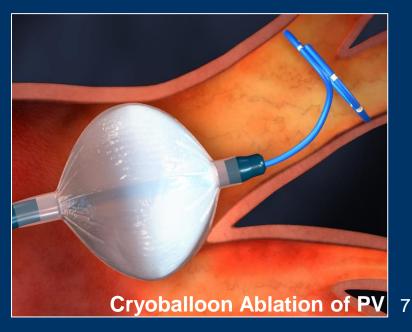
Key Exclusion Criteria

- Previous LA ablation or surgery
- PCI, MI within 3M of enrollment
- Stroke/TIA within 6M of enrollment
- LVEF < 35%
- LA diameter > 55mm

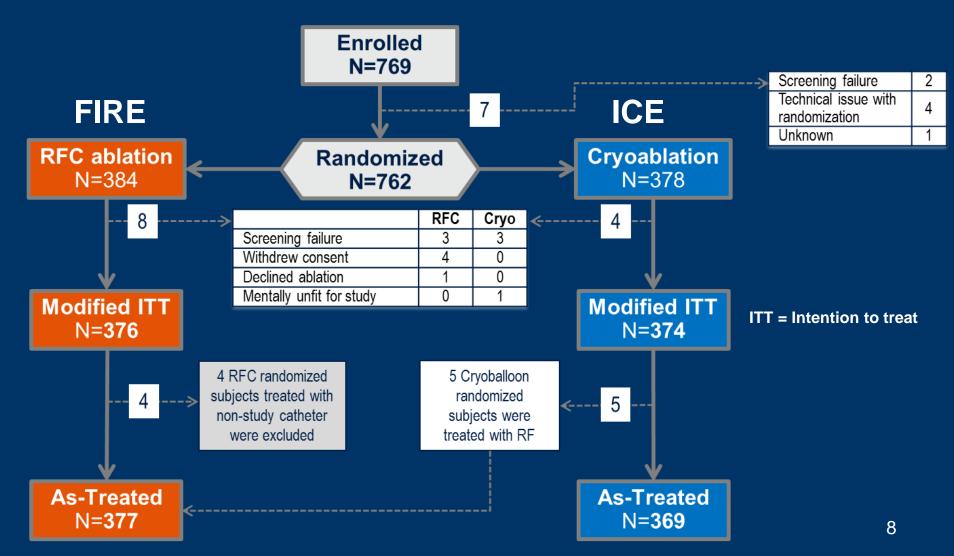
Methods

- Investigators must have documented experience
 - - ≥ 50 cases with either technology; each center had to provide at least one investigator proficient in both techniques
 - ≥ 10 cases before introduction of advanced-generation catheters
- Anticoagulation per guidelines/hospital standards
- PVI-only approach (CTI flutter ablation allowed, no additional lines or CFAE ablation)
- Must confirm PV isolation with a mapping catheter
 - 30-minute waiting period after last application
- Energy source crossover not permitted
- AADs discontinued after 90 day blanking period
 - Amiodarone required to be discontinued day of procedure


Methods

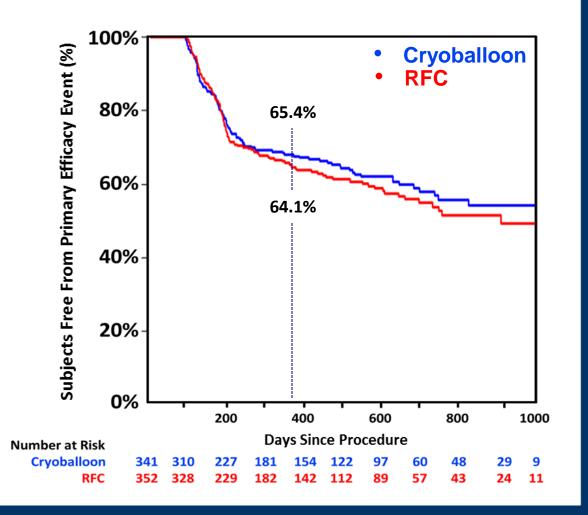

RFC Ablation ("FIRE")

- Power was not to exceed
 - 40 Watts at A/I aspect
 - 30 Watts at P/S aspect
- 3D electroanatomical mapping


Cryoballoon Ablation ("ICE")

- Max. freeze duration of 240s recommended
- Bonus freeze after isolation recommended
- Phrenic nerve pacing required

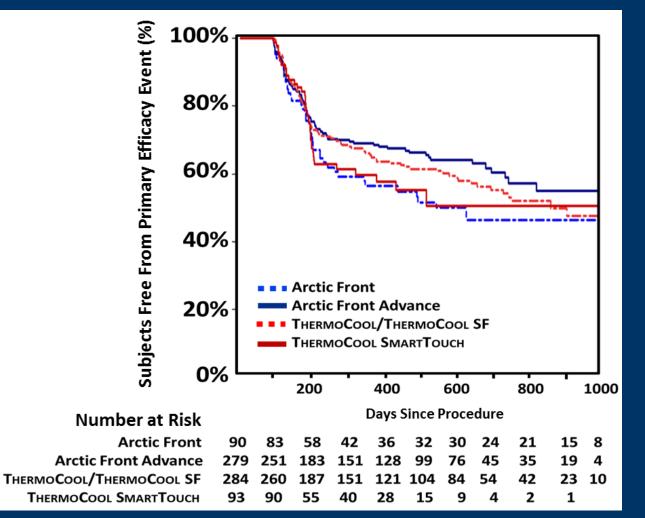
Patient Flow Chart



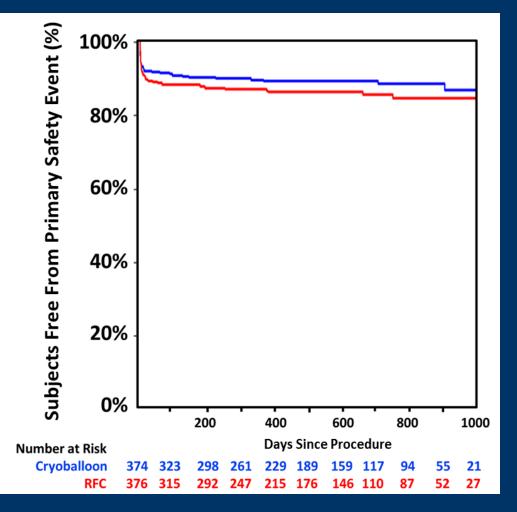
Patient Demographics and Follow-up

	RFC (n=376)	Cryoballo on (n=374)	P- value*	Patient Follow-up			
Age, years	60.1 ± 9.2	59.9 ± 9.8	0.83		RFC (n=376)	Cryoballoon (n=374)	
Men, n (%)	236 (63)	221 (59)	0.30				
BMI, kg/m²	27.8 ± 4.5	28.0 ± 4.7	0.66	Visits	2007 / 2372 (85%)	2006 / 2317 (87%)	
CHA ₂ DS ₂ -VASc Score, n (%)			0.19**	Maan	, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,	
0	67 (17.8)	58 (15.5)		Mean F/U	1.54 ± 0.79 years	1.54 ± 0.80 years	
1	109 (29.0)	108 (28.9)		Time			
2	97 (25.8)	95 (25.4)		Total			
3	62 (16.5)	60 (16.0)		F/U Time	577 patient years	576 patient years	
4	33 (8.8)	40 (10.7)		Weekly			
5	7 (1.9)	10 (2.7)		Tele-	60.0%	58.1%	
6	1 (0.3)	3 (0.8)		ECG			
Years Since First PAF Diagnosis	4.7 ± 5.3	4.6 ± 5.1	0.97				
Left Atrial Diameter, mm	40.6 ± 5.8	40.8 ± 6.5	0.58				
Previous DC Cardioversion	23.4%	23%	0.89				
Systolic Blood Pressure, mm Hg	134.8 ± 18.9	133.6 ± 18.0	0.40				
Diastolic Blood Pressure, mm Hg	78.9 ± 10.6	78.8 ± 11.5	0.83			9	

Primary Endpoint Results


Primary Efficacy Endpoint Met

Modified ITT analysis


- Non-inferiority hypothesis met
- HR [95% CI] = 0.96 [0.76-1.22]; p = 0.0004
- Superiority test: p = 0.74

Primary Efficacy by Catheter Category

Log-rank test: No significant heterogeneity (p = 0.25)

Primary Safety Endpoint Met

Modified ITT analysis

HR [95% CI] = 0.78 [0.52-1.18]; p = 0.24

Safety Event Type	RFC (n=376)	Cryoballoon (n=374)
All-cause death*	0	2
All-cause stroke/TIA	2	2
Arrhythmia-related SAE	13	8
Non-arrhythmia-related	36	28
SAE		
Total	51	40

* Unrelated to treatment/device

Key Treatment-Related Serious Adverse Events

Event (N, %)	RFC (n=376)	Cryoballoon (n=374)
Groin Site Complication*	16 (4.3%)	7 (1.9%)
Atrial Flutter/Atrial Tachycardia**	10 (2.7%)	3 (0.8%)
Phrenic Nerve Injury unresolved at discharge	0 (0%)	10 (2.7%)***
Unresolved at 3 months	0 (0%)	2 (0.5%)
Unresolved at > 12 months	0 (0%)	1 (0.3%)
Cardiac Tamponade/Pericardial Effusion	5 (1.3%)	1 (0.3%)
Stroke/TIA	2 (0.5%)	2 (0.5%)
Atrial Septal Defect	1 (0.3%)	0 (0%)
Esophageal Ulcer	0 (0%)	1 (0.3%)
Pericarditis	0 (0%)	1 (0.3%)
Atrioesophageal Fistula	0 (0%)	0 (0%)
Pulmonary Vein Stenosis	0 (0%)	0 (0%)

* Includes vascular pseudoaneurysm, AV fistula, device-related infection, hematoma, puncture site hemorrhage, groin pain

** Serious (e.g. hospitalization) and causally related to the therapeutic intervention (e.g. ablation-induced or drug-induced)

*** 8 resolved by 3 month visit, 1 resolved by 6 months visit, 1 unresolved after 12 month visit

Procedural Characteristics

Shorter, More Consistent* Procedure Times with the Cryoballoon

Time Measurement (minutes)	RFC (n=376)	Cryoballoon (n=374)	P-value**	
Procedure Time***	140.9 ± 54.9	124.4 ± 39.0	<0.0001	
LA Dwell Time***	108.6 ± 44.9	92.3 ± 31.4	<0.0001	
Fluoroscopy Time	16.6 ± 17.8	21.7 ± 13.9	<0.0001	

* Standard deviations were smaller in the cryoballoon group for all three procedure time measures, indicating more consistent times with less variation from the mean.

** t-test

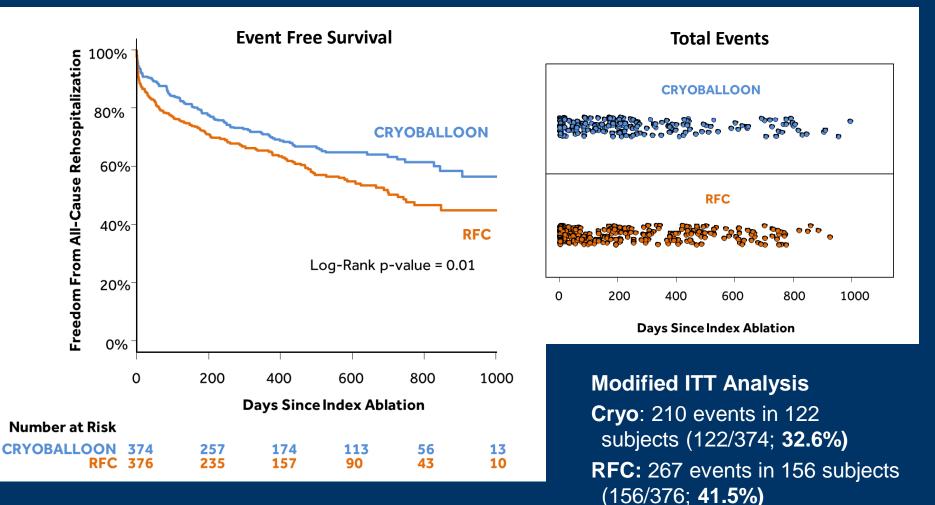
*** Protocol required 30 min. waiting period after last application to assess PV isolation.

Secondary Analyses Results

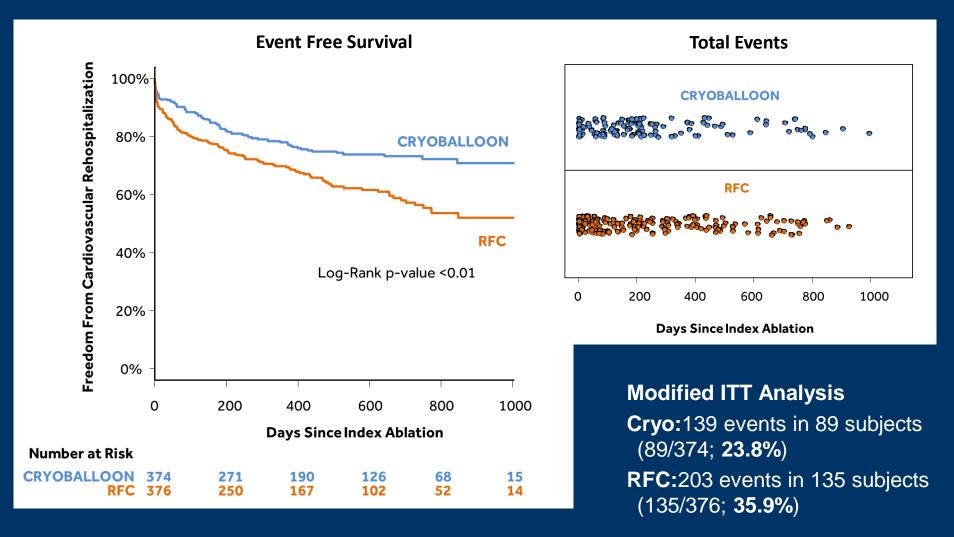
Secondary Analysis Background

Secondary parameter analysis important in a comprehensive clinically meaningful evaluation

Published studies have reported:


- Nearly 40% hospitalization rates <1 year post-AF ablation^{1,2}
- AF-related readmission rates as high as 22%^{1,2}
- Approximately 10% of patients have a repeat ablation <1 year^{1,2,3}

Secondary analyses included⁴:

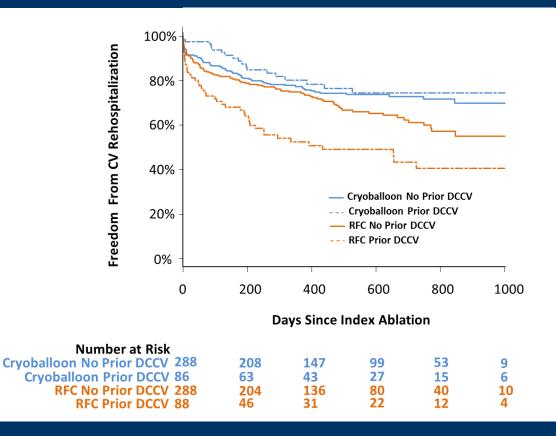

- Cardiovascular hospitalization* (including AF hospitalization*)
- Repeat ablation*
- Quality-of-life*
- All-cause hospitalization
- Direct current cardioversion (DC Cardioversion)
- * Predefined secondary analyses
- † Not predefined but included in analyses

1. Shah, et al. J AM Coll Cardiol. 2012; 59: 143-149. 2. Opolski, et al. Cardiol J. 2015: 22(6): 630-636. 3. Calkins, et al. Europace. 2012; 14:528-606. 4. Kuck KH, et al. The FIRE AND ICE

Freedom From All-Cause Hospitalization

Freedom From Cardiovascular Hospitalization

Freedom from Cardiovascular Hospitalization Subgroup analysis of Baseline Characteristics

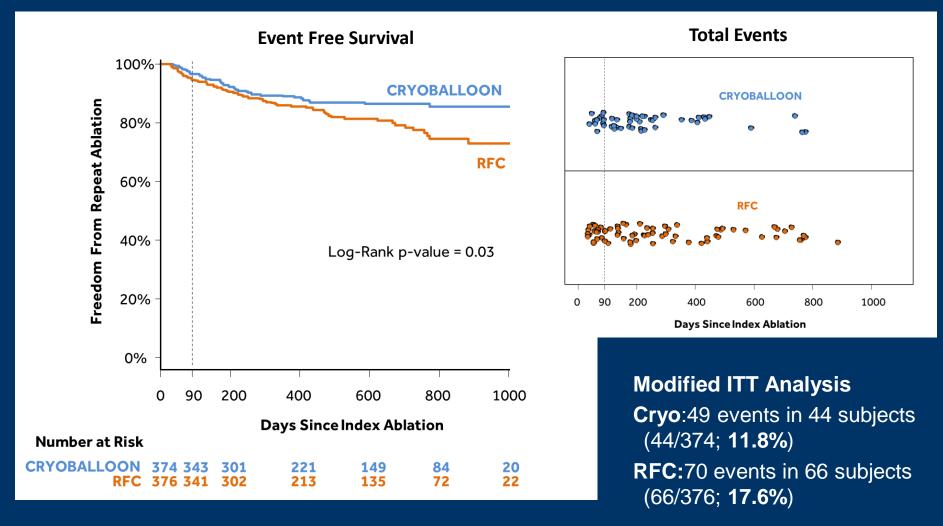

Subgroup		No. of ubjects	HR (2-Sided 95% CI)	P-Value*
		F	avors Cryoballoon Favors RFC	
Age:	≤ 65 > 65	520 230		0.15
Gender:	Female Male	293 457		0.43
CHA2DS2-VASc Score:	0-1 2-5	342 - 408	- -	0.01
HATCH Score:	0 1-3	232 518		0.18
First PAF Diagnosis:	< 2.69 years ≥ 2.69 years	374 374	-	0.69
LA Diameter:	≤ 41 mm > 41 mm	287 297	_	0.22
AAD at Discharge:	No AAD use AAD use	371 379	_	0.93
Prior (History of) DCCV:	Yes No	174 - 576	•	0.02
All Subjects		750		
		0.2	2 0.4 0.6 0.8 1.0 1.2 1.4	

* P-Value from interaction term in Cox regression model

CI = confidence interval; HR = hazard ratio; PAF = paroxysmal atrial fibrillation; LA = left atrial;

AAD = antiarrhythmic drug; DCCV = direct current cardioversion

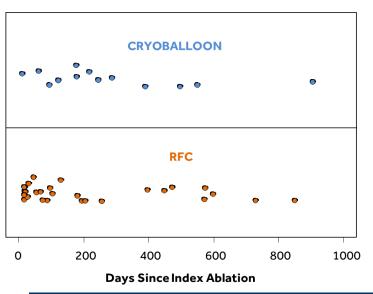
Freedom from Cardiovascular Hospitalization Subgroup Analysis of Subjects with Baseline DC Cardioversion



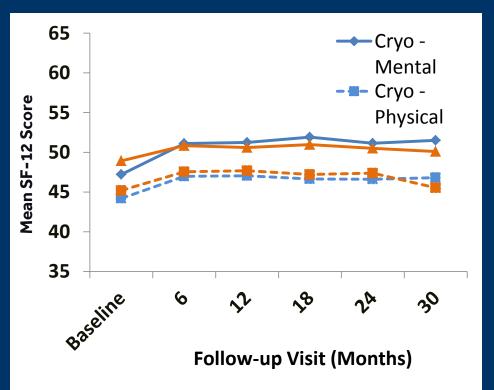
Cardiovascular Hospitalization


	Subjects with a CV Hospitalization (n, %)	P- Value*	
Cryoballoon No Prior DCCV	71/288 (24.7%)	<0.01	
RFC No Prior DCCV	92/288 (31.9%)		
Cryoballoon Prior DCCV	18/86 (20.9%)	-0.05	
RFC Prior DCCV	43/88 (48.9%)	=0.05	

* P-value from interaction term in Cox regression model


Freedom From Repeat Ablation

Freedom From DC Cardioversion



Total Events

Modified ITT Analysis Cryo: 13 events in 12 subjects (12/374; 3.2%) RFC: 28 events in 24 subjects (24/376; 6.4%)

Subject Quality-of-Life

Summary of SF-12 Data at Baseline and 6 Months

		Baseline	6 Months	Δ	P-Value*
Cryoballoon	Mental	47.1±10.3	51.1±8.9	4.0±9.8	<0.01
N=258	Physical	43.7±9.1	47.0±9.1	3.2±8.2	<0.01
RFC	Mental	48.9±9.8	50.8±8.8	1.9±9.9	<0.01
N=267	Physical	44.5±9.5	47.6±8.6	3.1±8.6	<0.01
* t-test					

Quality-of-life improved during follow-up in both groups and was maintained throughout 30 months

FIRE AND ICE Study Conclusions

- Primary Endpoints: PVI by cryoballoon ablation was found to be noninferior to PVI by RFC ablation in terms of efficacy and safety, but had shorter and more consistent procedure times¹
- Subjects treated with cryoballoon compared to RFC had significantly fewer:²
 - Cardiovascular hospitalizations (including AF hospitalizations)
 - Repeat ablations
 - All-cause hospitalizations
 - Direct current cardioversions
- Both patient groups demonstrated improved quality-of-life scores after an AF ablation²
- These analyses have important implications on daily clinical practice

25

1. Kuck K-H, et al. Cryoballoon or Radiofrequency Ablation of Paroxysmal Atrial Fibrillation. *The New England Journal of Medicine*. Epub ahead of print (NEJM 16-02014). *2. Kuck KH, et al. The FIRE AND ICE Trial Looking Beyond the Primary Safety and Efficacy Endpoints. Late-breaking Clinical Trial Presentation at Cardiostim 2016 June 8-10; Nice, France. (Abstract)*

Arctic Front[™] and Arctic Front Advance[™] Cardiac CryoAblation Catheter Systems

Indications

• The Arctic Front Advance[™] Cardiac CryoAblation Catheter catheter is indicated for the treatment of patients with atrial fibrillation (AF).

Contraindications

- Use of Arctic Front Advance[™] Cryoballoon is contraindicated as follows:
- In the ventricle because of the danger of catheter entrapment in the chordae tendinae
- In patients with active systemic infections
- In conditions where the manipulation of the catheter within the heart would be unsafe (e.g., intracardiac mural thrombus)
- In patients with cryoglobulinemia
- In patients with one or more pulmonary vein stents

Brief Statement

• Refer to the device technical manual for detailed information regarding the procedure, indications, contraindications, warnings, precautions, and potential complications/adverse events. For further information, please contact your Medtronic Sales Representative and/or consult Medtronic's website at www.medtronic.com.

Committees

Steering Committee

Prof. Dr. Karl-Heinz Kuck – Pl Hamburg, DE Dr. Jean-Paul Albenque Toulouse, FR Prof. Dr. Josep Brugada Barcelona, ES Prof. Dr. Claudio Tondo Milan, IT Prof. Dr. Claudio Tondo Milan, IT Prof. Dr. Stuart Pocock London, UK PD Dr. Kurt Bestehorn Munich, DE Dr. Alexander Fürnkranz Frankfurt, DE

Independent Event Review Committee

Prof. Dr. Thorsten Lewalter – Chairman *Munich, DE* Dr. Malte Kuniss *Bad Nauheim, DE* Prof. Dr. Lars Lickfett *Mönchengladbach, DE*

Independent Data and Safety Monitoring Board

Prof. Dr. Hein J.J. Wellens – Chairman Maastricht, NL
Dr. Riccardo Cappato Milan, IT
Dr. David Wyn Davies London, UK
Dr. Jan Tijssen – Statistician Amsterdam, NL

Patient Enrollment by Center

Investigator	Center	Country	Enrolled	Treated
Prof. Dr. Karl-Heinz Kuck	Asklepios Klinik St. Georg, Hamburg	Germany	162	157
Dr. Julian Chun	Cardioangiologisches Centrum Bethanien CCB, Frankfurt	Germany	136	131
Dr. Arif Elvan	Isala Klinieken, Zwolle	The Netherlands	78	74
Prof. Dr. Thomas Arentz	University Heart Center Freiburg, Bad Krozingen	Germany	67	66
PD Dr. Michael Kühne	Universitätsspital, Basel	Switzerland	50	50
Dr. Laszlo Gellér	Semmelweis Egyetem, Budapest	Hungary	47	47
Dr. Matthias Busch	Universitätsmedizin, Greifswald	Germany	35	33
Dr. Lluis Mont	Hospital Clinic de Barcelona, Barcelona	Spain	32	32
Dr. Alberto Barrera	Hospital Clínico Universitario "Virgen de la Victoria", Malaga	Spain	30	30
PD Dr. Thomas Deneke	Herz- und Gefäss-Klinik, Bad Neustadt	Germany	27	26
Dr. Jean-Paul Albenque	Clinique Pasteur, Toulouse	France	26	26
Prof. Dr. Volker Kühlkamp	Herz-Zentrum Bodensee, Konstanz	Germany	22	22
Prof. Dr. Claudio Tondo	Centro Cardiologico Monzino University of Milan, Milan	Italy	18	18
Dr. Ricardo Ruiz-Granell	Hospital Clinico Universitario, Valencia	Spain	17	16
Doz. Petr Neuzil	NA Homolce Hospital, Prague	Czech Republic	12	12
Dr. Nicasio Pérez- Castellano	Hospital Clinico San Carlos, Madrid	Spain	10	10
TOTAL			769	750